Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 131
Filtrar
1.
New Phytol ; 242(3): 1156-1171, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38513692

RESUMEN

In Catharanthus roseus, monoterpenoid indole alkaloids (MIAs) are produced through the cooperation of four cell types, with final products accumulating in specialized cells known as idioblasts and laticifers. To explore the relationship between cellular differentiation and cell type-specific MIA metabolism, we analyzed the expression of MIA biosynthesis in germinating seeds. Embryos from immature and mature seeds were observed via stereomicroscopy, fluorescence microscopy, and electron microscopy. Time-series MIA and iridoid quantification, along with transcriptome analysis, were conducted to determine the initiation of MIA biosynthesis. In addition, the localization of MIAs was examined using alkaloid staining and imaging mass spectrometry (IMS). Laticifers were present in embryos before seed maturation. MIA biosynthesis commenced 12 h after germination. MIAs accumulated in laticifers of embryos following seed germination, and MIA metabolism is induced after germination in a tissue-specific manner. These findings suggest that cellular morphological differentiation precedes metabolic differentiation. Considering the well-known toxicity and defense role of MIAs in matured plants, MIAs may be an important defense strategy already in the delicate developmental phase of seed germination, and biosynthesis and accumulation of MIAs may require the tissue and cellular differentiation.


Asunto(s)
Catharanthus , Alcaloides de Triptamina Secologanina , Monoterpenos/metabolismo , Catharanthus/metabolismo , Germinación , Semillas/metabolismo , Alcaloides de Triptamina Secologanina/metabolismo , Diferenciación Celular , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas
2.
Plant J ; 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38441834

RESUMEN

Glutathione (GSH) is required for various physiological processes in plants, including redox regulation and detoxification of harmful compounds. GSH also functions as a repository for assimilated sulfur and is actively catabolized in plants. In Arabidopsis, GSH is mainly degraded initially by cytosolic enzymes, γ-glutamyl cyclotransferase, and γ-glutamyl peptidase, which release cysteinylglycine (Cys-Gly). However, the subsequent enzyme responsible for catabolizing this dipeptide has not been identified to date. In the present study, we identified At4g17830 as a Cys-Gly dipeptidase, namely cysteinylglycine peptidase 1 (CGP1). CGP1 complemented the phenotype of the yeast mutant that cannot degrade Cys-Gly. The Arabidopsis cgp1 mutant had lower Cys-Gly degradation activity than the wild type and showed perturbed concentrations of thiol compounds. Recombinant CGP1 showed reasonable Cys-Gly degradation activity in vitro. Metabolomic analysis revealed that cgp1 exhibited signs of severe sulfur deficiency, such as elevated accumulation of O-acetylserine (OAS) and the decrease in sulfur-containing metabolites. Morphological changes observed in cgp1, including longer primary roots of germinating seeds, were also likely associated with sulfur starvation. Notably, At4g17830 has previously been reported to encode an N2 -acetylornithine deacetylase (NAOD) that functions in the ornithine biosynthesis. The cgp1 mutant did not show a decrease in ornithine content, whereas the analysis of CGP1 structure did not rule out the possibility that CGP1 has Cys-Gly dipeptidase and NAOD activities. Therefore, we propose that CGP1 is a Cys-Gly dipeptidase that functions in the cytosolic GSH degradation pathway and may play dual roles in GSH and ornithine metabolism.

3.
J Exp Bot ; 75(6): 1651-1653, 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38481104

RESUMEN

Plants are a treasure trove of metabolic compounds. The chemical diversity of plant cells has developed and been maintained through evolution and metabolic regulation, and plays a crucial role in plant physiology, development, and adaption to changing environmental situations. Metabolomics, when combined with genomics and proteomics, has opened up unprecedented opportunities to address the biological importance of metabolic diversity. It has also provided an avenue for metabolic engineering to produce a particular compound of interest to meet societal and economical demands, an important effort to achieve sustainable development. This Special Issue therefore focuses on current trends in plant metabolomics research, providing examples in the development of analytical technologies, the functional study of plant metabolism, and applications to synthetic and engineering biology.


Asunto(s)
Metaboloma , Metabolómica , Genómica , Proteómica , Plantas/metabolismo
4.
Commun Biol ; 7(1): 102, 2024 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-38267515

RESUMEN

Serine metabolism is involved in various biological processes. Here we investigate primary functions of the phosphorylated pathway of serine biosynthesis in a non-vascular plant Marchantia polymorpha by analyzing knockout mutants of MpPGDH encoding 3-phosphoglycerate dehydrogenase in this pathway. Growth phenotypes indicate that serine from the phosphorylated pathway in the dark is crucial for thallus growth. Sperm development requires serine from the phosphorylated pathway, while egg formation does not. Functional MpPGDH in the maternal genome is necessary for embryo and sporophyte development. Under high CO2 where the glycolate pathway of serine biosynthesis is inhibited, suppressed thallus growth of the mutants is not fully recovered by exogenously-supplemented serine, suggesting the importance of serine homeostasis involving the phosphorylated and glycolate pathways. Metabolomic phenotypes indicate that the phosphorylated pathway mainly influences the tricarboxylic acid cycle, the amino acid and nucleotide metabolism, and lipid metabolism. These results indicate the importance of the phosphorylated pathway of serine biosynthesis in the dark, in the development of sperm, embryo, and sporophyte, and metabolism in M. polymorpha.


Asunto(s)
Marchantia , Serina , Marchantia/genética , Semillas , Espermatozoides , Glicolatos
5.
FEBS Open Bio ; 14(1): 79-95, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38049196

RESUMEN

Hepatocytes can switch their metabolic processes in response to nutrient availability. However, the dynamics of metabolites (such as lactate, pyruvate, and ATP) in hepatocytes during the metabolic switch remain unknown. In this study, we visualized metabolite dynamics in primary cultured hepatocytes during recovery from glucose-deprivation. We observed a decrease in the mitochondrial ATP concentration when glucose was administered to hepatocytes under glucose-deprivation conditions. In contrast, there was slight change in the cytoplasmic ATP concentration. A decrease in mitochondrial ATP concentration was associated with increased protein synthesis rather than glycogen synthesis, activation of urea cycle, and production of reactive oxygen species. These results suggest that mitochondrial ATP is important in switching metabolic processes in the hepatocytes.


Asunto(s)
Glucosa , Hígado , Glucosa/metabolismo , Hígado/metabolismo , Adenosina Trifosfato/metabolismo , Hepatocitos/metabolismo , Ácido Láctico/metabolismo , Ácido Pirúvico/metabolismo
6.
Biochem Biophys Res Commun ; 694: 149416, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38147697

RESUMEN

The process of glycolysis breaks down glycogen stored in muscles, producing lactate through pyruvate to generate energy. Excess lactate is then released into the bloodstream. When lactate reaches the liver, it is converted to glucose, which muscles utilize as a substrate to generate ATP. Although the biochemical study of lactate metabolism in hepatocytes and skeletal muscle cells has been extensive, the spatial and temporal dynamics of this metabolism in live cells are still unknown. We observed the dynamics of metabolism-related molecules in primary cultured hepatocytes and a skeletal muscle cell line upon lactate overload. Our observations revealed an increase in cytoplasmic pyruvate concentration in hepatocytes, which led to glucose release. Skeletal muscle cells exhibited elevated levels of lactate and pyruvate levels in both the cytoplasm and mitochondrial matrix. However, mitochondrial ATP levels remained unaffected, indicating that the increased lactate can be converted to pyruvate but is unlikely to be utilized for ATP production. The findings suggest that excess lactate in skeletal muscle cells is taken up into mitochondria with little contribution to ATP production. Meanwhile, lactate released into the bloodstream can be converted to glucose in hepatocytes for subsequent utilization in skeletal muscle cells.


Asunto(s)
Glucosa , Hepatocitos , Hepatocitos/metabolismo , Glucosa/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Ácido Láctico , Adenosina Trifosfato/metabolismo , Piruvatos
8.
Hum Cell ; 36(6): 2074-2086, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37610679

RESUMEN

The identification and development of therapeutic targets in cancer stem cells that lead to tumor development, recurrence, metastasis, and drug resistance is an important goal in cancer research. The hepatocellular carcinoma cell line Li-7 contains functionally different types of cells. Cells with tumor-forming activity are enriched in cancer stem cell-like CD13+CD166- cells and this cell population gradually decreases during culture in conventional culture medium (RPMI1640 containing 10% fetal bovine serum). When Li-7 cells are cultured in mTeSR1, a medium developed for human pluripotent stem cells, CD13+CD166- cells, and their tumorigenicity is maintained. Here, we sought to identify the mechanisms of tumorigenicity in this sub-population. We compared gene expression profiles of CD13+CD166- cells with other cell sub-populations and identified nine overexpressed genes (ENPP2, SCGN, FGFR4, MCOLN3, KCNJ16, SMIM22, SMIM24, SERPINH1, and TMPRSS2) in CD13+CD166- cells. After transfer from mTeSR1 to RPMI1640 containing 10% fetal bovine serum, the expression of these nine genes decreased in Li-7 cells and they lost tumorigenicity. In contrast, when these genes of Li-7 cells were forcibly expressed in cultures using RPMI1640 containing 10% fetal bovine serum, Li-7 cells maintained tumorigenicity. A metabolome analysis using capillary electrophoresis-mass spectrometry showed that two metabolic pathways, "Alanine, aspartate and glutamate metabolism" and "Arginine biosynthesis" were activated in cancer stem-cell-like cells. Our analyses here showed potential therapeutic target genes and metabolites for treatment of cancer stem cells in hepatocellular carcinoma.

9.
Plant Cell Physiol ; 64(12): 1482-1493, 2023 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-37489637

RESUMEN

Plants incorporate acquired carbon and nitrogen into amino acid metabolism, whereby the building blocks of proteins and the precursors of various metabolites are produced. This fundamental demand requires tight amino acid metabolism to sustain physiological homeostasis. There is increasing evidence that amino acid metabolism undergoes plastic alteration to orchestrate specific growth and developmental events. Consequently, there has been a gradual exploration of the interface at which amino acid metabolism and plant morphogenesis are mutually affected. This research progress offers an opportunity to explore amino acid metabolism, with the goal to understand how it can be modulated to serve special cellular needs and regulate specific growth and developmental pathways. Continuous improvements in the sensitivity and coverage of metabolomics technology, along with the development of chemoinformatics, have allowed the investigation of these research questions. In this review, we summarize the roles of threonine, serine, arginine and γ-aminobutyric acid as representative examples of amino acids relevant to specific developmental processes in plants ('functional amino acids'). Our objective is to expand perspectives regarding amino acid metabolism beyond the conventional view that it is merely life-supporting machinery.


Asunto(s)
Aminoácidos , Plantas , Aminoácidos/metabolismo , Plantas/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Desarrollo de la Planta , Crecimiento y Desarrollo
10.
Front Plant Sci ; 14: 1201129, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37360714

RESUMEN

A genome-wide association study (GWAS), which uses information on single nucleotide polymorphisms (SNPs) from many accessions, has become a powerful approach to gene identification. A metabolome GWAS (mGWAS), which relies on phenotypic information based on metabolite accumulation, can identify genes that contribute to primary and secondary metabolite contents. In this study, we carried out a mGWAS using seed metabolomic data from Arabidopsis thaliana accessions obtained by liquid chromatography-mass spectrometry to identify SNPs highly associated with the contents of metabolites such as glucosinolates. These SNPs were present in genes known to be involved in glucosinolate biosynthesis, thus confirming the effectiveness of our analysis. We subsequently focused on SNPs detected in an unknown methyltransferase gene associated with N-methylhistidine content. Knockout and overexpression of A. thaliana lines of this gene had significantly decreased and increased N-methylhistidine contents, respectively. We confirmed that the overexpressing line exclusively accumulated histidine methylated at the pi position, not at the tau position. Our findings suggest that the identified methyltransferase gene encodes a key enzyme for N-methylhistidine biosynthesis in A. thaliana.

11.
Plant Cell Physiol ; 64(7): 716-728, 2023 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-37233612

RESUMEN

Sesame (Sesamum indicum L.) plants contain large amounts of acteoside, a typical phenylethanoid glycoside (PhG) that exhibits various pharmacological activities. Although there is increasing interest in the biosynthesis of PhGs for improved production, the pathway remains to be clarified. In this study, we established sesame-cultured cells and performed transcriptome analysis of methyl jasmonate (MeJA)-treated cultured cells to identify enzyme genes responsible for glucosylation and acylation in acteoside biosynthesis. Among the genes annotated as UDP-sugar-dependent glycosyltransferase (UGT) and acyltransferase (AT), 34 genes and one gene, respectively, were upregulated by MeJA in accordance with acteoside accumulation. Based on a phylogenetic analysis, five UGT genes (SiUGT1-5) and one AT gene (SiAT1) were selected as candidate genes involved in acteoside biosynthesis. Additionally, two AT genes (SiAT2-3) were selected based on sequence identity. Enzyme assays using recombinant SiUGT proteins revealed that SiUGT1, namely, UGT85AF10, had the highest glucosyltransferase activity among the five candidates against hydroxytyrosol to produce hydroxytyrosol 1-O-glucoside. SiUGT1 also exhibited glucosyltransferase activity against tyrosol to produce salidroside (tyrosol 1-O-glucoside). SiUGT2, namely, UGT85AF11, had similar activity against hydroxytyrosol and tyrosol. Enzyme assay using the recombinant SiATs indicated that SiAT1 and SiAT2 had activity transferring the caffeoyl group to hydroxytyrosol 1-O-glucoside and salidroside (tyrosol 1-O-glucoside) but not to decaffeoyl-acteoside. The caffeoyl group was attached mainly at the 4-position of glucose of hydroxytyrosol 1-O-glucoside, followed by attachment at the 6-position and the 3-position of glucose. Based on our results, we propose an acteoside biosynthetic pathway induced by MeJA treatment in sesame.


Asunto(s)
Sesamum , Sesamum/metabolismo , Glicosiltransferasas/genética , Azúcares , Filogenia , Glucósidos , Glicósidos/metabolismo , Proteínas Recombinantes/genética , Glucosa , Glucosiltransferasas/metabolismo , Uridina Difosfato
12.
ISME Commun ; 3(1): 28, 2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-37002405

RESUMEN

Compost is used worldwide as a soil conditioner for crops, but its functions have still been explored. Here, the omics profiles of carrots were investigated, as a root vegetable plant model, in a field amended with compost fermented with thermophilic Bacillaceae for growth and quality indices. Exposure to compost significantly increased the productivity, antioxidant activity, color, and taste of the carrot root and altered the soil bacterial composition with the levels of characteristic metabolites of the leaf, root, and soil. Based on the data, structural equation modeling (SEM) estimated that amino acids, antioxidant activity, flavonoids and/or carotenoids in plants were optimally linked by exposure to compost. The SEM of the soil estimated that the genus Paenibacillus and nitrogen compounds were optimally involved during exposure. These estimates did not show a contradiction between the whole genomic analysis of compost-derived Paenibacillus isolates and the bioactivity data, inferring the presence of a complex cascade of plant growth-promoting effects and modulation of the nitrogen cycle by the compost itself. These observations have provided information on the qualitative indicators of compost in complex soil-plant interactions and offer a new perspective for chemically independent sustainable agriculture through the efficient use of natural nitrogen.

13.
Plant Cell Physiol ; 64(5): 461-473, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36617247

RESUMEN

Programmed cell death (PCD) in lateral root caps (LRCs) is crucial for maintaining root cap functionality. Endoplasmic reticulum (ER) bodies play important roles in plant immunity and PCD. However, the distribution of ER bodies and their communication with vacuoles in the LRC remain elusive. In this study, we investigated the ultrastructure of LRC cells of wild-type and transgenic Arabidopsis lines using an auto-acquisition transmission electron microscope (TEM) system and high-pressure freezing. Gigapixel-scale high-resolution TEM imaging of the transverse and longitudinal sections of roots followed by three-dimensional imaging identified sausage-shaped structures budding from the ER. These were subsequently identified as ER bodies using GFPh transgenic lines expressing green fluorescent protein (GFP) fused with an ER retention signal (HDEL). Immunogold labeling using an anti-GFP antibody detected GFP signals in the ER bodies and vacuoles. The fusion of ER bodies with vacuoles in LRC cells was identified using correlative light and electron microscopy. Imaging of the root tips of a GFPh transgenic line with a PYK10 promoter revealed the localization of PYK10, a member of the ß-glucosidase family with an ER retention signal, in the ER bodies in the inner layer along with a fusion of ER bodies with vacuoles in the middle layer and collapse of vacuoles in the outer layer of the LRC. These findings suggest that ER bodies in LRC directly transport ß-glucosidases to the vacuoles, and that a subsequent vacuolar collapse triggered by an unknown mechanism releases protective substances to the growing root tip to protect it from the invaders.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/metabolismo , beta-Glucosidasa/química , beta-Glucosidasa/metabolismo , Vacuolas/metabolismo , Retículo Endoplásmico/metabolismo , Arabidopsis/metabolismo , Proteínas Fluorescentes Verdes/metabolismo
14.
Metabolites ; 12(12)2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36557300

RESUMEN

In this study, targeted metabolome analysis was applied to identify the discriminative metabolites between Indonesian shallot landraces, Japanese long-day onion (LDO) varieties, and Japanese short-day onion (SDO) varieties. In total, 172 metabolite signal intensities were subjected to multivariate PLS-DA, VIP, and random forest modeling to gain further insight into genotype-specific metabolites. PLS-DA divides the examined genotypes into three different clusters, implying that shallot landraces exhibited a distinct metabolite profile compared with Japanese LDO and SDO varieties. The PLS-DA, VIP, and random forest results indicated that the shallot and LDO are richer in metabolite constituents in comparison with the SDO. Specifically, amino acids and organosulfur compounds were the key characteristic metabolites in shallot and LDO genotypes. The analysis of S-alk(en)yl-L-cysteine sulfoxide (ACSO) compounds showed higher accumulation in the shallot landraces relative to LDO and SDO varieties, which explains the stronger pungency and odor in shallots. In addition, the LDO showed higher ACSO content compared with the SDO, implying that long-day cultivation might enhance sulfur assimilation in the Japanese onion. The LDO 'Super Kitamomiji' and the shallots 'Probolinggo' and 'Thailand' showed higher ACSO content than other varieties, making it useful for Allium breeding to improve the flavor and stress tolerance of onions.

15.
Front Plant Sci ; 13: 1034625, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36275607

RESUMEN

Isobavachalcone (IBC) is a prenylated chalcone mainly distributed in some Fabaceae and Moraceae species. IBC exhibits a wide range of pharmacological properties, including anti-bacterial, anti-viral, anti-inflammatory, and anti-cancer activities. In this study, we attempted to construct the heterologous biosynthesis pathway of IBC in tobacco (Nicotiana tabacum). Four previously reported prenyltransferases, including GuILDT from Glycyrrhiza uralensis, HlPT1 from Humulus lupulus, and SfILDT and SfFPT from Sophora flavescens, were subjected to an in planta screening to verify their activities for the biosynthesis of IBC, by using tobacco transient expression with exogenous isoliquiritigenin as the substrate. Only SfFPT and HlPT1 could convert isoliquiritigenin to IBC, and the activity of SfFPT was higher than that of HlPT1. By co-expression of GmCHS8 and GmCHR5 from Glycine max, endogenous isoliquiritigenin was generated in tobacco leaves (21.0 µg/g dry weight). After transformation with a multigene vector carrying GmCHS8, GmCHR5, and SfFPT, de novo biosynthesis of IBC was achieved in transgenic tobacco T0 lines, in which the highest amount of IBC was 0.56 µg/g dry weight. The yield of IBC in transgenic plants was nearly equal to that in SfFPT transient expression experiments, in which substrate supplement was sufficient, indicating that low IBC yield was not attributed to the substrate supplement. Our research provided a prospect to produce valuable prenylflavonoids using plant-based metabolic engineering.

16.
Plant J ; 111(6): 1626-1642, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35932489

RESUMEN

Glutathione (GSH) functions as a major sulfur repository and hence occupies an important position in primary sulfur metabolism. GSH degradation results in sulfur reallocation and is believed to be carried out mainly by γ-glutamyl cyclotransferases (GGCT2;1, GGCT2;2, and GGCT2;3), which, however, do not fully explain the rapid GSH turnover. Here, we discovered that γ-glutamyl peptidase 1 (GGP1) contributes to GSH degradation through a yeast complementation assay. Recombinant proteins of GGP1, as well as GGP3, showed high degradation activity of GSH, but not of oxidized glutathione (GSSG), in vitro. Notably, the GGP1 transcripts were highly abundant in rosette leaves, in agreement with the ggp1 mutants constantly accumulating more GSH regardless of nutritional conditions. Given the lower energy requirements of the GGP- than the GGCT-mediated pathway, the GGP-mediated pathway could be a more efficient route for GSH degradation than the GGCT-mediated pathway. Therefore, we propose a model wherein cytosolic GSH is degraded chiefly by GGP1 and likely also by GGP3. Another noteworthy fact is that GGPs are known to process GSH conjugates in glucosinolate and camalexin synthesis; indeed, we confirmed that the ggp1 mutant contained higher levels of O-acetyl-l-Ser, a signaling molecule for sulfur starvation, and lower levels of glucosinolates and their degradation products. The predicted structure of GGP1 further provided a rationale for this hypothesis. In conclusion, we suggest that GGP1 and possibly GGP3 play vital roles in both primary and secondary sulfur metabolism.


Asunto(s)
Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Glucosinolatos/metabolismo , Glutatión/metabolismo , Disulfuro de Glutatión/metabolismo , Péptido Hidrolasas/metabolismo , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/metabolismo , Azufre/metabolismo
17.
Plant Cell Physiol ; 63(9): 1181-1192, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-36003026

RESUMEN

Water scarcity is a serious agricultural problem causing significant losses to crop yield and product quality. The development of technologies to mitigate the damage caused by drought stress is essential for ensuring a sustainable food supply for the increasing global population. We herein report that the exogenous application of ethanol, an inexpensive and environmentally friendly chemical, significantly enhances drought tolerance in Arabidopsis thaliana, rice and wheat. The transcriptomic analyses of ethanol-treated plants revealed the upregulation of genes related to sucrose and starch metabolism, phenylpropanoids and glucosinolate biosynthesis, while metabolomic analysis showed an increased accumulation of sugars, glucosinolates and drought-tolerance-related amino acids. The phenotyping analysis indicated that drought-induced water loss was delayed in the ethanol-treated plants. Furthermore, ethanol treatment induced stomatal closure, resulting in decreased transpiration rate and increased leaf water contents under drought stress conditions. The ethanol treatment did not enhance drought tolerance in the mutant of ABI1, a negative regulator of abscisic acid (ABA) signaling in Arabidopsis, indicating that ABA signaling contributes to ethanol-mediated drought tolerance. The nuclear magnetic resonance analysis using 13C-labeled ethanol indicated that gluconeogenesis is involved in the accumulation of sugars. The ethanol treatment did not enhance the drought tolerance in the aldehyde dehydrogenase (aldh) triple mutant (aldh2b4/aldh2b7/aldh2c4). These results show that ABA signaling and acetic acid biosynthesis are involved in ethanol-mediated drought tolerance and that chemical priming through ethanol application regulates sugar accumulation and gluconeogenesis, leading to enhanced drought tolerance and sustained plant growth. These findings highlight a new survival strategy for increasing crop production under water-limited conditions.


Asunto(s)
Arabidopsis , Sequías , Ácido Abscísico/metabolismo , Arabidopsis/metabolismo , Etanol/metabolismo , Regulación de la Expresión Génica de las Plantas , Estomas de Plantas/fisiología , Plantas Modificadas Genéticamente/metabolismo , Estrés Fisiológico/genética , Azúcares/metabolismo , Agua/metabolismo
18.
Front Plant Sci ; 13: 945225, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35991393

RESUMEN

Excess PPi triggers developmental defects in a cell-autonomous manner. The level of inorganic pyrophosphate (PPi) must be tightly regulated in all kingdoms for the proper execution of cellular functions. In plants, the vacuolar proton pyrophosphatase (H+-PPase) has a pivotal role in PPi homeostasis. We previously demonstrated that the excess cytosolic PPi in the H+-PPase loss-of-function fugu5 mutant inhibits gluconeogenesis from seed storage lipids, arrests cell division in cotyledonary palisade tissue, and triggers a compensated cell enlargement (CCE). Moreover, PPi alters pavement cell (PC) shape, stomatal patterning, and functioning, supporting specific yet broad inhibitory effects of PPi on leaf morphogenesis. Whereas these developmental defects were totally rescued by the expression of the yeast soluble pyrophosphatase IPP1, sucrose supply alone canceled CCE in the palisade tissue but not the epidermal developmental defects. Hence, we postulated that the latter are likely triggered by excess PPi rather than a sucrose deficit. To formally test this hypothesis, we adopted a spatiotemporal approach by constructing and analyzing fugu5-1 PDF1 pro ::IPP1, fugu5-1 CLV1 pro ::IPP1, and fugu5-1 ICL pro ::IPP1, whereby PPi was removed specifically from the epidermis, palisade tissue cells, or during the 4 days following seed imbibition, respectively. It is important to note that whereas PC defects in fugu5-1 PDF1 pro ::IPP1 were completely recovered, those in fugu5-1 CLV1 pro ::IPP1 were not. In addition, phenotypic analyses of fugu5-1 ICL pro ::IPP1 lines demonstrated that the immediate removal of PPi after seed imbibition markedly improved overall plant growth, abolished CCE, but only partially restored the epidermal developmental defects. Next, the impact of spatial and temporal removal of PPi was investigated by capillary electrophoresis time-of-flight mass spectrometry (CE-TOF MS). Our analysis revealed that the metabolic profiles are differentially affected among all the above transgenic lines, and consistent with an axial role of central metabolism of gluconeogenesis in CCE. Taken together, this study provides a conceptual framework to unveil metabolic fluctuations within leaf tissues with high spatio-temporal resolution. Finally, our findings suggest that excess PPi exerts its inhibitory effect in planta in the early stages of seedling establishment in a tissue- and cell-autonomous manner.

19.
Front Mol Biosci ; 9: 839051, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35300116

RESUMEN

While the high year-round production of tomatoes has been facilitated by solar greenhouse cultivation, these yields readily fluctuate in response to changing environmental conditions. Mathematic modeling has been applied to forecast phenotypes of tomatoes using environmental measurements (e.g., temperature) as indirect parameters. In this study, metabolome data, as direct parameters reflecting plant internal status, were used to construct a predictive model of the anthesis rate of greenhouse tomatoes. Metabolome data were obtained from tomato leaves and used as variables for linear regression with the least absolute shrinkage and selection operator (LASSO) for prediction. The constructed model accurately predicted the anthesis rate, with an R2 value of 0.85. Twenty-nine of the 161 metabolites were selected as candidate markers. The selected metabolites were further validated for their association with anthesis rates using the different metabolome datasets. To assess the importance of the selected metabolites in cultivation, the relationships between the metabolites and cultivation conditions were analyzed via correspondence analysis. Trigonelline, whose content did not exhibit a diurnal rhythm, displayed major contributions to the cultivation, and is thus a potential metabolic marker for predicting the anthesis rate. This study demonstrates that machine learning can be applied to metabolome data to identify metabolites indicative of agricultural traits.

20.
Plant Physiol ; 189(2): 459-464, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35301535

RESUMEN

Analyzing only one cell allows the changes and characteristics of intracellular metabolites during the chromosome segregation process to be precisely captured and mitotic sub-phases to be dissected at the metabolite level.


Asunto(s)
Segregación Cromosómica , Mitosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...